Oversampling, Undersampling, Smote SVM dan Random Forest pada Klasifikasi Penerima Bidikmisi Sejawa Timur Tahun 2017

نویسندگان

چکیده

Bidikmisi is tuition assistance from the government for high school graduates (SMA) or equivalent who have good academic potential but economic limitations. Different scholarships that focus on providing awards financial support to those excel. The achievement requirements are aimed at ensuring recipients selected truly and willingness complete higher education. Given of this bidikmisi must really be right person, in study a classification 2017 East Java will carried out, there data not balanced "Accepted" class more than "Not accepted" class. If balanced, almost all algorithms produce much accuracy majority minority Researchers handle imbalances. resampling technique used research related prediction includes techniques, namely Oversampling, Undersampling SMOTE using two methods, SVM Random Forest. Oversampling was chosen because it does reduce amount adds dataset lacking algorithm Synthetic Minority Over-sampling Technique (SMOTE), several produces effective dealing with unbalanced classes reduces overfitting.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computer-Aided Lung Nodule Recognition by SVM Classifier Based on Combination of Random Undersampling and SMOTE

In lung cancer computer-aided detection/diagnosis (CAD) systems, classification of regions of interest (ROI) is often used to detect/diagnose lung nodule accurately. However, problems of unbalanced datasets often have detrimental effects on the performance of classification. In this paper, both minority and majority classes are resampled to increase the generalization ability. We propose a nove...

متن کامل

Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling

In the classification framework there are problems in which the number of examples per class is not equitably distributed, formerly known as imbalanced data sets. This situation is a handicap when trying to identify the minority classes, as the learning algorithms are not usually adapted to such characteristics. An usual approach to deal with the problem of imbalanced data sets is the use of a ...

متن کامل

Predicting credit card customer churn in banks using data mining

In this paper, we solve the customer credit card churn prediction via data mining. We developed an ensemble system incorporating majority voting and involving Multilayer Perceptron (MLP), Logistic Regression (LR), decision trees (J48), Random Forest (RF), Radial Basis Function (RBF) network and Support Vector Machine (SVM) as the constituents. The dataset was taken from the Business Intelligenc...

متن کامل

Oversampling for Imbalanced Learning Based on K-Means and SMOTE

Learning from class-imbalanced data continues to be a common and challenging problem in supervised learning as standard classification algorithms are designed to handle balanced class distributions. While different strategies exist to tackle this problem, methods which generate artificial data to achieve a balanced class distribution are more versatile than modifications to the classification a...

متن کامل

Lupus nephritis among children in Indonesia

Antara tahun 1985-1995 (10 tahun) telah dilakukan penelitian terhadap 30 anak dengan nefritis lupus yang dikumpulkan dari 7 pusat Nefrologi Anak di Indonesia. (Jmur rata-rata penderita ialah I I,7 tahun (berkisar antara 8 satnpai I8 tahun) dengan perbandingan anak perempuan terhadap taki-laki 5 berbandtng l. Gejala klinis yang terbanyak diremukan adalah panas tinggi 8loÀ, ruam muka 66,6ok dan a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computer System and Informatics

سال: 2022

ISSN: ['2714-8912', '2714-7150']

DOI: https://doi.org/10.47065/josyc.v3i4.2154